Jumat, 11 Juli 2014

Pemberian Bias Pada Daerah Deplesi Built In Voltage Dioda

 Pemberian Bias Pada Dioda

Bias diode adalah cara pemberian tegangan luar ke terminal diode. Apabila A diberi tegangan positif dan K diberi tegangan negative maka bias tersebut dikatakan bias maju (forward bias). Pada kondisi bias ini akan terjadi aliran arus dengan ketentuan beda tegangan yang diberikan ke diode atau VA-VK > Vj dan selalu positif. Sebaliknya apabila A diberi tegangan negative dan K diberi tegangan positif, arus yang mengalir (IR) jauh lebih kecil dari pada kondisi bias maju. Bias ini dinamakan bias mundur (reverse bias) pada arus maju (IF) diperlakukan baterai tegangan yang diberikan dengan IF tidak terlalu besar maupun tidak ada peningkatan IR yang cukup significant.

P-N junction
P-n junction terbentuk dengan menggabungkan semikonduktor tipe-N dan tipe-Pbersamaan dalam hubungan yang sangat dekat. Istilah junction menunjuk ke bagian di mana kedua tipe semikonduktor tersebut bertemu. Dapat dilihat sebagai perbatasan antara wilayah antara blok tipe-P dan tipe-N seperti yang diperlihatkan di diagram bawah:

Daerah Deplesi
Daerah deplesi atau daerah transisi adalah daerah yang sangat tipis dekat sambungan antara semikonduktor tipe p dan semikonduktor tipe n pada sebuah diode. Daerah ini dapat membangkitkan pembawa muatan minoritas saat terdapat cukup energi termal untuk membangkitkan pasangan lubang-elektron. Salah satu dari pembawa muatan minoritas ini, misalnya elektron pada tipe-p, akan mengalami pengaruh dari proses penolakan elektron difusi dari tipe-n. Dengan kata lain elektron minoritas ini akan ikut tertarik ke semikonduktor
tipe-n. Gerakan pembawa muatan akibat pembangkitan termal ini lebih dikenal sebagai“drift”. Situasi akan stabil saat arus difusi sama dengan arus drift.
Pada daerah sambungan/daerah diplesi yang sangat tipis terjadi pengosongan pembawa muatan mayoritas akibat terjadinya difusi ke sisi yang lain. Hilangnya pembawa muatan mayoritas di daerah ini meninggalkan lapisan muatan positip di daerah tipe-n dan lapisan muatan negatif di daerah tipe-p.

Karakteristik Arus dan Tegangan Forward Bias
Ketika kaki katoda disambungkan dengan kutub negatif batere dan anoda disambungkan dengan kutub positif, maka dikatakan bahwa dioda sedang dibias dengan tegangan maju.
Dioda dengan bias tegangan maju Dalam bias maju, kutub negatif batere akan menolak elekton-elektron bebas yang ada dalam semikonduktor tipe N, ika energi listrik yang digunakan adalah melebihi tegangan barir, maka elektron yang tertolak tersebut akan melintasi daerah deplesi dan bergabung dengan hole yang ada pada tipe P, hal ini terjadi terus menerus selama rangkaian di gambar tersebut adalah tertutup. Kondisi inilah yang menyebabkan adanya arus listrik yang mengalir dalam rangkaian.


Hubungan Arus Tegangan Pada Dioda


KARAKTERISTIK ARUS-TEGANGAN PADA DIODA

Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n diantara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator. Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk didalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.

DIODA
Dioda adalah komponen zat padat (solid state) yang paling dasar. Ada banyak tipe dioda menurut karakteristik operasi dan aplikasinya misalnya dioda zener, dioda pemancar cahaya (Light Emitting Diode, LED) dan lain-lain. Dioda adalah devais dua elektroda yang berlaku sebagai konduktor satu arah. Dioda tipe dasar adalah dioda sambungan pn, yang terdiri atas bahan tipe p dan n yang dipisahkan oleh sambungan (junction).

Karakteristik sambungan p-n 
Hubungan arus dan tegangan pada dioda sambungan p-n dinyatakan dengan persamaan:
I = Io (eV/ηVT-1)
Dengan Io = arus balik jenuh
              η  = 1 (untuk germanium), merupakan suatu faktor
                  = 2 (untuk silikon)
       VT = T/11600 (kesetaraaan volt dari arus)
             = 0,026 pada suhu kamar T = 300 K

Persamaan diatas adalah relasi Einstein (Widodo,2002:11). 
Bentuk grafik karakteristik volt-ampere yang diberikan oleh persamaan diatas  diperlihatkan pada gambar 4.3a. Untuk V positif yang besar (beberapa kali VT), angka I dalam kurung dapat diabaikan, sehingga arus naik secara eksponensial terhadap tegangan, kecuali si suatu lingkungan yang kecil di titik pangkal. Apabila dioda berprategangan mundur dan /V/ beberapa kali VT, 1 = -Io (arus balik tetap)  Oleh karena itu Io disebut arus balik jenuh. Bagian lengkungan yang terdiri dari garis patah-patah pada prategangan balik Vz, karakteristik dioda memperlihakan adanya penyimpangan yang menyolok dan mendadak dari persamaan 4.3. Pada tegangan kritis ini arus balik yang besar mengalir dan dikatakan bahwa dioda ini berada dalam daerah dadal (breakdown). Dioda silikon dan germanium mempunyai sejumlah perbedaan yang penting untuk perencanaan rangkaian. Perbedaan karakteristik volt-ampere diperlihatkan pada gambar 4.4 (dengan mengambil contoh dioada germanium 1N270 dan dioda silikon 1N3605). 

     
 Suatu ciri yang perlu dicatat pada gambar 4.4, adalah adanya suatu tegangan potong-masuk (cut-in), titik putus (break point) atau ambang (threshold), Vγ. Dibawah tegangan ini, arus sangat kecil. Diatas Vγ arus akan naik sangat cepat. Dari gambar 4.4 terlihat bahwa Vγ kira-kira sama dengan 0,2 V untuk dioda germanum, dan 0,6 V untuk silikon. Referensi lain menggunakan istilah tegangan offset atau tegangan lutut yang besinoarnya sekitar 0,7 V untuk dioda silikon(Malvino,1994:37).

Dioda semi konduktor banyak di gunakan sebagai penyearah. penyearah yang paling sederhana adalah penyearah sebuah dioda.melihat dari namanya maka hanya setengah glombang saja yang akan di searahkan. gambar 28 menunjukan rangkaian penyearah glombang mendapat masukan dari skunder trafo yang berupa sinyal ac berbentuk sinus,Vi=Vm sin ^t(gambar 28(b)) dari persamaan tersebut,Vm merupakan tegangan maksimum. harga Vm ini hanya bisa di ukur dengan CRO yakni dengan melihat langsung pada glombangnya. sedangkan pada umumnya harga yang tercantum pada skunder trafo adalah tegangan efektif. tegangan efektif (Veff) atau tegangan rms (Vrms) adalah

                    Vm
VEff=Vmrs= . . .=0,707 Vm
                     -2

“tegangan (arus) efektif atau rms (root-mean-square)adalah tegangan (arus) yang terukur oleh volt meter (ampermeter).karena harga Vm pada umumnya jauh lebih bsar dari pada V- (tegangan cut-in dioda) maka pada pembahasan penyearah ini V- diabaikan prinsip kerja penyearah setengah glombang adalah bahwa pada saat sinyal input berupa siklus positif maka dioda dapat bias maju sehingga arus (i) mengalir ke beban (i) pada (c) dari gambar 28
   
  
  
Penyearah Setengah Gelombang 
Dioda semi konduktor banyak di gunakan sebagai penyearah.
penyearah yang paling sederhana adalah
penyearah sebuah dioda.melihat dari namanya maka hanya setengah glombang saja yang akan di searahkan. menunjukan rangkaian penyearah glombang mendapat masukan dari skunder trafo yang berupa sinyal ac berbentuk sinus,Vi=Vm sin ^t , dari persamaan tersebut,Vm merupakan tegangan maksimum. harga Vm ini hanya bisa di ukur dengan CRO yakni dengan melihat langsung pada glombangnya. sedangkan pada umumnya harga yang tercantum pada skunder trafo adalah tegangan efektif. tegangan efektif (Veff) atau tegangan rms (Vrms) adalah
                    Vm
VEff=Vmrs= . . .=0,707 Vm
                     -2
tegangan (arus) efektif atau rms (root-mean-square)adalah tegangan (arus) yang terukur oleh volt meter (ampermeter).karena harga Vm pada umumnya jauh lebih bsar dari pada V- (tegangan cut-in dioda) maka pada pembahasan penyearah ini V- diabaikan prinsip kerja penyearah setengah glombang adalah bahwa pada saat sinyal input berupa siklus positif maka dioda dapat bias maju sehingga arus (i) mengalir ke beban (i). 

untuk penyearah glombang di peroleh
                      Idc .1/2 Im t dt
                     Idc .Im/- - 0,318
tegangan keluaran dc yang berupa turun tegangan dc pada beban adalah :
              Vdc=Idc . RL
apabila harga Rf jauh kecil dari RL, yang berarti Rf bisa di abaikan,maka:
               Vm=Im.RL
sehingga:Vdc .Im.RL/-
              Vdc .Vm/- - 0,318 Vm
apabila penyearah bekerja pada tegangan Vm yang kecil untuk memperoleh hasil yang lebih teliti maka tegangan cut in dioda (V-) perlu dipertimbangkan yaitu:

            Vdc .0,318 .Vm & V-

dalam perencanaan rangkaian penyearah yang juga penting untuk diketahui adalah beberapa tegangan maksimum yang harus di tahan oleh dioda ini sering di sebut dengan istilah Piv (peak-inverse voltage) atau tegangan puncak balik. hal ini karena pada saat dioda mendapat bias mundur (balik) maka tidak arus yang mengalir dan semua tegangan dari sekunder trafo berada pada dioda.

Karakteristik Maju Pada Dioda.
Apabila pada kutub2 elektroda suatu dioda dikoneksikan dengan sumber-arus dimana kutub positif sumber-arus berkoneksi dengan material P ( anoda ) yaitu terminal A dan Kutub negatif sumber-arus berkoneksi dengan material N ( katoda ) yaitu terminal B maka arus dapat mengalir kuat lewat dioda,ini berarti dioda diberi tegangan-panjar-maju ( forward-bias) atau tegangan-muka maju disebut juga bias-positif.
  
Tegangan pada tegangan–muka maju.
Pada percobaan diatas ( gambar melihat tingkah dioda dipanjar-maju ) bila dioda diberi tegangan–panjar maju melalui resistor maka dioda akan mengalirkan arus,besarnya arus yang mengalir pada dioda bergantung pada tegangan-jepit. Tegangan-jepit itu terbagi antara Resistor dan dioda Dimana :
ü    kecil saja. Pada dioda tegangan jepit itu hanya
ü     Pada resistor tegangan jepit itu besar.
Pada posisi tegangan jepit maksimum pembagian tegangan pada Resistor dan Dioda ialah R= 8,4 Volt dan D= 0,6 volt Dikarenakan sebagian besar tegangan jepit praktis seluruhnya pada resistor dan pada dioda hanya kecil saja,dioda bertingkah seperti Hubungan-singkat.


Bentuk grafik karakteristik maju.
   Hubungan kuat arus yang mengalir pada dioda dengan tegangan-panjar-maju dioda disebut karakteristik maju dioda. Pada karakteristik maju dioda,tegangan pada dioda dianggap tegangan positif dan arus yang mengalir juga dianggap Positif maka grafik karakteristik maju dioda pada Kuadran I pada sumbu koordinat kartesius. Dimana untuk tegangan pada arah horizontal yaitu sumbu X(= X1). Dimana untuk kuat-Arus pada arah Vertikal yaitu sumbu Y(= Y1). Besarnya tegangan jepit dan kuat arus maksimum yang dikenakan pada suatu dioda berdasarkan ketentuan pabrik pembuatnya,dimana hal itu di lukiskan pada grafik karakteristik maju dioda itu.

Karakteristik Terbalik Pada Dioda.
Pada percobaan diatas bila dioda diberi tegangan–panjar maju melalui resistor maka dioda akan mengalirkan arus,besarnya arus yang mengalir pada dioda bergantung pada tegangan-jepit. Tegangan-jepit itu terbagi antara Resistor dan dioda. Namun apabila suatu dioda dikoneksikan dengan sumber-arus dimana kutub positif sumber-arus berkoneksi dengan material N ( katoda ) dan Kutub negatif sumber-arus berkoneksi dengan material P ( anoda ) maka arus tidak dapat mengalir lewat dioda berarti dioda diberi tegangan-panjar-terbalik (reverse-bias ) atau tegangan-muka terbalik dan disebut juga bias-negatif.
   
Pembagian Tegangan pada tegangan–panjar terbalik.
Bila dioda diberi tegangan–panjar terbalik melalui resistor maka dioda tidak mengalirkan arus.
Tegangan-jepit itu terbagi antara Resistor dan dioda Dimana :
-    Pada dioda tegangan jepit itu besar.
-    Pada resistor tegangan jepit itu hanya kecil saja.
Pada posisi tegangan jepit maksimum pembagian tegangan pada Resistor dan Dioda ialah D= 68,9 Volt dan R= 0,1 volt Dikarenakan sebagian besar tegangan jepit praktis seluruhnya pada dioda dan pada resistor hanya kecil saja,dioda bertingkah seperti putus-an.


Rabu, 09 Juli 2014

Alat-alat Semikonduktor


Alat-alat Semikonduktor

a)        Transistor
Piranti tiga terminal atau lebih dikenal sebagai “transistor”. Terdapat dua jenis transistor yaitu : 1. Transistor bipolar atau BJT (bipolar junction transistor) 2. Transistor unipolar atau  FET (field-effect transistor).
Dibandingkan dengan FET, BJT dapat memberikan penguatan yang jauh lebih besar dan tanggapan frekuensi yang lebih baik. Pada BJT baik pembawa muatan mayoritas maupun pembawa muatan minoritas mempunyai peranan yang sama pentingnya.
Terdapat dua jenis kontruksi dasar BJT, yaitu jenis n-p-n dan jenis p-n-p. Untuk jenis n-p-n, BJT terbuat dari lapisan tipis semikonduktor tipe-p dengan tingkat doping yang relatif rendah, yang diapit oleh dua lapisan semikonduktor tipe-n. Karena alasan sejarah pembuatannya, bagian di tengah disebut “basis” (base), salah satu bagian tipe-n (biasanya mempunyai dimensi yang kecil) disebut “emitor” (emitter) dan yang lainya sebagai kolektor” (collector). Tanda panah pada gambar menunjukkan kaki emitor dan titik dari material tipe-p ke material tipe-n. Perhatikan bahwa untuk jenis n-p-n, transistor terdiri dari dua sambungan p-n yang berperilaku seperti diode. Setiap diode dapat diberi panjar maju atau berpanjar mundur, sehingga transistor dapat memiliki empat modus pengoperasian.
Salah satu modus yang banyak digunakan disebut “modus normal”, yaitu sambungan emitor-basis berpanjar maju dan sambungan kolektor-basis berpanjar mundur. Modus ini juga sering disebut sebagai pengoperasian transistor pada “daerah aktif”.
Pabrikasi BJT dapat dilakukan dengan dua teknik, yaitu struktur transistor-alloy melalui difusi dan struktur transistor planar. Gambar 9.2-a menunjukkan struktur transistoralloy n-p-n. Kolektor terbuat dari chip semikonduktor tipe-n dengan ketebalan kurang dari 1 mm2. Daerah basis dibuat dengan proses difusi kemudian dibuat kontak logam untuk dihubungkan dengan kaki basis. Daerah emitor dibuat dengan teknik alloy pada daerah basis. Sebagai hasilnya berupa sebuah pasangan sambungan p-n yang dipisahkan oleh daerah basis kira-kira setebal kertas.


Untuk struktur planar (lihat pada gambar), suatu lapisan tipe-n dengan tingkat doping rendah ditumbuhkan di atas substrat n+ (tanda + menunjukkan tingkat doping sangat tinggi). Setelah melalui proses oksidasi pada permukaan, sebuah jendela (window) dibuka dengan proses penggerusan (etching) dan suatu pengotor (p) dimasukkan ke kristal dengan proses difusi untuk membentuk sambungan (junction). Sekali lagi setelah melalui reoksidasi, sebuah jendela kecil dibuka untuk proses difusi pembentukan daerah emitor (n).
Secara konvensional simbol transistor n-p-n diperlihatkan pada gambar diatas dilengkapi dengan tanda panah pada emitor yang menunjukkan aliran muatan positif. Walaupun sebuah transistor n-p-n akan bekerja dengan kedua daerah n dapat berfungsi sebagai emitor, namun karena kedua daerah mempunyai tingkat doping dan geometri yang berbeda, maka daerah n yang dimaksud harus diberi label.

b)        Dioda
Dioda merupakan salah satu komponen elektronika yang termasuk komponen aktif. Disamping merupakan gambar yang melambangkan dioda penyearah.
Sisi P disebut Anoda dan sisi N disebut Katoda. Lambang dioda seperti anak panah yang arahnya dari sisi P ke sisi N. Karenanya ini mengingatkan kita pada arus konvensional mudah mengalir dari sisi P ke sisi N.
Dioda
Dalam pendekatan dioda ideal, dioda dianggap sebagai sebuah saklar tertutup jika diberi bias forward dan sebagai saklar terbuka jika diberi bias reverse. Artinya secara ideal, dioda berlaku seperti konduktor sempurna (tegangan nol) jika dibias forward dan seperti isolator sempurna (arus nol) saat dibias reverse.

c)        Mikroprosesor
Mikroprosesor
Mikroprosesor adalah sebuah IC (Integrated Circuit) yang digunakan sebagai otak/pengolah utama dalam sebuah sistem computer. Mikroprosesor merupakan hasil dari pertumbuhan semikonduktor.

Pertama kali Mikroprosesor dikenalkan pada tahun 1971 oleh Intel Corp,

yaitu Mikroprosesor Intel 4004 yang mempunyai arsitektur 4 bit. Dengan penambahan beberapa peripheral (memori, piranti I/O, dsb) Mikroprosesor 4004 di ubah menjadi komputer kecil oleh intel.
Kemudian mikroprosesor ini di kembangkan lagi menjadi 8080 (berasitektur 8bit), 8085, dan kemudian 8086 (berasitektur 16bit). Dilain pihak perusahaan semikonduktor laen juga memperkenalkan dan mengembangkan mikroprosesor antara lain Motorola dengan M6800, dan Zilog dengan Z80nya.
Mikroprosesor Intel yang berasitektur 16 bit ini kebanyakan di akhiri oleh angka 86, akan tetapi karena nomor tidak dapat digunakan untuk merek dagang mereka menggantinya dengan nama pentium untuk merek dagang Mikroprosesor generasi kelima mereka. Arsitektur ini telah dua kali diperluas untuk mengakomodasi ukuran word yang lebih besar.
Di tahun 1985, Intel mengumumkan rancangan generasi 386 32-bit yang menggantikan rancangan generasi 286 16-bit. Arsitektur 32-bit ini dikenal dengan nama x86-32 atau IA-32 (singkatan dari Intel Architecture, 32-bit). Kemudian pada tahun 2003, AMD memperkenalkan Athlon 64, yang menerapkan secara lebih jauh pengembangan dari arsitektur ini menuju ke arsitektur 64-bit, dikenal dengan beberapa istilah x86-64, AMD64 (AMD), EM64T atau IA-32e (Intel), dan x64 (Microsoft).

d)        Thermistor
Thermistor
Sebuah thermistor dibuat dari bahan semikonduktor. Komponen ini dapat dibuat dalam bentuk piringan, batangan, atau butiran. Thermistor butiran dapat memiliki ukuran diameter yang hanya beberapa milimeter. Pada beberapa thermistor butiran, butir semikonduktor dibungkus oleh sebuah kapsu kaca.
Karena ukuran kaca yang sangat kecil, thermistor butiran dapat memberikan reaksi yang sangat cepat terhadap prubahan suhu. Thermistor memiliki dua buah kaki terminal. Sebagian besar thermistor memiliki  tahanan yang nilainya akan semakin mengecil dengan bertambahnya suhu. Thermistor jenis ini disebut sebagai thermistor koefsien suhu negatif (negative temperature coefficient) atau thermistor ntc. Thermistor-thermistordengan koefesien suhu yang positif (positive temperature cofficient) (ptc) juga tersedia di pasaran, namun lebih jarang digunakan.
Thermistor  digunakan di dalam rangkaian-rangkaian pengukur suhu atau yang memberikan tanggapan-tanggapan tertentu terhadap perubahan suhu. Kompnen ini juga dapat digunakan dalam yang akan mengalami gangguan-gangguan, atau bahkan kerusakan, akibat perubahan suhu. Thermistor secara otomatis akan bekerja untuk menetralkan efek perubahan suhu.

e)      Sel surya
Sel surya merupakan suatu devais semikonduktor yang dapat menghasilkan listrik jika diberikan sejumlah energi cahaya. Proses penghasilan energi listrik itu diawali dengan proses pemutusan ikatan elektron pada atom-atom yang tersusun dalam kristal semikonduktor ketika diberikan sejumlah energi (hf).
Salah satu bahan semikonduktor yang biasa digunakan sebagai sel surya adalah kristal silikon. Ketika suatu kristal silikon di-doping dengan unsur golongan kelima, misalnya arsen, maka atom-atom arsen itu akan menempati ruang diantara atom-atom silikon yang mengakibatkan munculnya elektron bebas pada material campuran tersebut. Elektron bebas tersebut berasal dari kelebihan elektron yang dimiliki oleh arsen terhadap lingkungan sekitarnya, dalam hal ini adalah silikon.
Semikonduktor jenis ini kemudian diberi nama semikonduktor tipe-n. Hal yang sebaliknya terjadi jika kristal silikon di-doping oleh unsur golongan ketiga, misalnya boron, maka kurangnya elektron valensi boron dibandingkan dengan silikon mengakibatkan munculnya hole yang bermuatan positif pada semikonduktor tersebut. Semikonduktor ini dinamakan semikonduktor tipe-p. Adanya tambahan pembawa muatan tersebut mengakibatkan semikonduktor ini akan lebih banyak menghasilkan pembawa muatan ketika diberikan sejumlah energi tertentu, baik pada semikonduktor tipe-n maupun tipe-p.

f)        I C (integrated circuit)
Sirkuit terpadu (bahasa Inggris: integrated circuit atau IC) adalah komponen dasar yang terdiri dari resistor, transistor dan lain-lain. IC adalah komponen yang dipakai sebagai otak peralatan elektronika.
Intergrated Circuit
Pada komputer, IC yang dipakai adalah mikroprosesor. Dalam sebuah mikroprosesor Intel Pentium 4 dengan ferkuensi 1,8 trilyun getaran per detik terdapat 16 juta transistor, belum termasuk komponen lain. Fabrikasi yang dipakai oleh mikroprosesor adalah 60nm.
Sirkuit terpadu dimungkinkan oleh teknologi pertengahan abad ke-20 dalam fabrikasi alat semikonduktor dan penemuan eksperimen yang menunjukkan bahwa alat semikonduktor dapat melakukan fungsi yang dilakukan oleh tabung vakum. Pengintegrasian transistor kecil yang banyak jumlahnya ke dalam sebuah chip yang kecil merupakan peningkatan yang sangat besar bagi perakitan tube-vakum sebesar-jari. Ukuran IC yang kecil, tepercaya, kecepatan "switch", konsumsi listrik rendah, produksi massal, dan kemudahan dalam menambahkan jumlahnya dengan cepat menyingkirkan tabung vakum.
Hanya setengah abad setelah penemuannya, IC telah digunakan dimana-mana. Radio, televisi, komputer, telepon selular, dan peralatan digital lainnya yang merupakan bagian penting dari masyarakat modern. Contohnya, sistem transportasi, internet, dll tergantung dari keberadaan alat ini. Banyak skolar percaya bahwa revolusi digital yang dibawa oleh sirkuit terpadu merupakan salah satu kejadian penting dalam sejarah umat manusia.
IC pada alat elektronik
IC mempunyai ukuran seukuran tutup pena sampai ukuran ibu jari dan dapat diisi sampai 250 kali dan digunakan pada alat elektronika seperti:
  • Telepon
  • Kalkulator
  • Ponsel
  • Radio